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Propagation in Layered Biased Semiconductor
Structures Based on Transport Analysis

CLIFFORD M. KROWNE, SENIOR MEMBER, IEEE, AND GREGORY B. TAIT, STUDENT MEMBER, IEEE

Abstract —A transport-field parallel-plate formulation and solution

method to determine the smafl-signal propagation constant is given for

wide microstrip lines over an iuhomogene-ously doped semiconductor sub-

strate of small transverse dimensions. Included in the detailed transport

model are two carrier species, recombination-generation mechanisms, dc

and ac field-dependent nobilities and diffusion constants, and bonndary

conditiou contatt effects. A transverse dc bias condition is applied. Struc-

&res numerically simulated are a voltage-variable GaAs distributed

Schottky barrier phase shifter end a transmission fine over a Si bipider

junction, Numericaf data based on a finite difference technique are gener-

ated on carrier densities, electric potentials and fields, and current denki-

ties. Propagation constant cafcrdations were favorably compared with

those calculated by both full-wave field analysis and moments-of-the-Boltz-

mann-equation anafysis for some less general cases. y results for the GaAs

structure we compared with available experimental data.

I. INTRODUCTION

w AVEGUIDING structures loaded with extrinsic

semiconductor material are utilized in both mono-

lithic microwave integrated circuits (MMIC’S) and high-

speed digital large scale integrated (LSI) and very large

scale integrated (VLSI) circr,iits. Distributed FET and IM-

PATT amplifiers, voltage-variable phase shifters, and tun-

able attenuators are several examples of distributed MMIC

devices which employ the interaction of the charge carriers

with the electromagnetic fields in semiconductors [1]–[4].

Also, rnicrostrip and coplanar transmission lines over lay-

ered semiconductor media are used for interconnections

between active devices in MMIC and VLSI technologies.,.
The interconnections generally he over passive semicon-

ductor material, except in the vicinity of active devices

where a transition region exists.

‘Analysis of metal–insulator-semiconductor (MIS) trans-

mission lines and distributed Schottky contact lines has

been carried out in the past with field approaches utilizing

a single constant conductivity y to model each doped semi-

conductor layer [5]–[9]. These field approaches, which

range in complexity from quasi-TEM to full-wave analy-

ses, have been successful in predicting the performance of

MIS structures and uniformly doped, biased Schottky

structures. This success is due to the lack of transverse

currents because of a distinct insulator–semiconductor in-

terface (MIS structures) and uniform conductivities in
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individual semiconductor bulk layers (MIS and Schottky

structures). When the semiconductor volume contains sev-

eral junctions (such as pn and n+ n) or intentionally graded

doped areas, the constant-conductivity assumption no

longer always represents the transverse transport accu-

rately.

For example, diffusion of carriers away from the transi-

tional zones between bulk and space-charge depletion re-

gions in the vicinity of a junction ‘causes a change in the

field-carrier interaction within a few Debye lengths of each

regional interface. Static dc characteristics as welll as ac

characteristics of the transport behavior will be altered. As

a result, wave propagation behavior will also be clhanged.

These additional considerations are especially important

for “structures which have very small transverse dimen-

sions, such as micron and submicron feature sizes, which

are increasingly seen in higher frequency (millimeter wave),

higher speed (GHz digital and logic pulse), or denser

circuits.

In this paper a transport-field parallel-plate formulation

and solution method to find the small-signal propagation

constant y is presented for wide mlcrostrip lines (with

respect to transverse dimensions) over an inhomoge-

neously doped semiconductor substrate. The formulation

approach includes dual carrier transport (electrons and

holes); recombination-generation mechanisms (direct band

gap, Shockl{>y-Read-Hall, and Auger); dc and ac field-

dependent carrier nobilities (p.(E),’ pP(E), p~a(ll), and

PP.(~)); field-dependent diffusion constants (D.(E) and
Dp( E)); and boundary condition contact effects at the

guiding structure walls (ohmic and Schottky contacts). The

E-field dependence of mobility is important since it allows

negative differential conductivity y to occur in some regions

of a structure possessing a III–V semiconductor mlaterial.

The theoretical approach contained herein avoids the

aforementioned difficulties when a field-transport model

possessing an oversimplified transport description of the

carriers is used. Section II covers the construction of the

field-transport model of the microstrip structure. A simul-

taneous set of coupled ac equations are obtained which

describe TM, electromagnetic propagation. The method

yields the dominant mode propagation constant Y for the

strip over passive or active semiconductor substrates and

retains dispersion through a detailed transport model. Sec-

tion 111 dhicusses the numerical finite difference technique
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Fig. 1. Cross-sectional sketch of propagation structure. Microstrip con-

ductor hes on top of an inhomogeneou~semrconductor. Bias consists of

applieddcvoltage Vu and ac current Jr.

and boundary conditions applied toward solving the large

number of simultaneous sets of dc and ac equations.

Section IV presents numerical results for two demonstra-

tive structures and provides comparison to some experi-

mental data. The structures are a voltage-variable phase

shifter employing a distributed microstrip Schottky contact

on an n-GaAs semiconductor substrate and a microstrip-

like transmission line over an active bipolar junction in Si.

The approach presented here may be appropriate for char-

acterizing propagation properties of gate, source, and drain

lines in large-width MESFET and JFET devices at mi-

crowave frequencies where the characteristic lengths ex-

ceed the epitaxial layer thickness [3], [9].

II. FIELD-TRANSPORT FORMULATION

Small-signal perturbations of the variables are assumed.

For an arbitrary variable v(r, t),

v(r, t)=vo(r) +ti(r)e~tif-y’ (1)

the sum of a dc term and an ac term with a propagation

constant y (v may be a vector). Applying the parallel-plate

assumption that the strip widths are large, d/dy terms in

the analysis to follow are dropped. Fig. 1 shows the

geometry of the structure in cross section. The effects of

the conductor on the propagation behavior are accounted

for by an ohmic or Schottky boundary condition (BC,

whichever is appropriate) and an independently calculated

attenuation constant aC based upon the skin effect. This

surface lies on the semiconductor, which may possess an

arbitrary doping profile of donors N~ ( x) and acceptors
N.(x), leading to a two-carrier transport system. Thus the

electron n and hole p concentrations can be constant,
rapidly varying, or lead to junction areas where space-

charge depletion regions exist.

In the semiconductor volume the carriers and field obey

the current continuity relations [10], [11]

where J., Jp,

dn 1

dt
—=; V. J.– RH(n, p) (2a)

dp

at =
–~v. JP– RP(n, p) (2b)

R., RP, and q are, respectively, the particle

electron and hole current density vectors, the electron and

hole net recombination rates, and the electronic charge

magnitude. R ~ = RP = R is specified to avoid a net sink

(or source) of charge (subtract (2b) from (2a) to see this

point). A local field representation is used for J. and JP:

~,= – qnv. + qD,, Vn (3a)

Jp = @vp – qDpvp (3b)

v~ = —pnE (3C)

VP= ppE. (3d)

Here the electron and hole nobilities and diffusion con-

stants are, respectively, p., pP, D., and DP, which depend

upon the local electric field E. The total particle current

density is

J= Jn+JP. (4)

By setting E,= E,= O and JY = ~ = O, y- and z-directed

currents are avoided in the analysis. Thus the problem is

reduced to one of determining the propagation constant y

for the dominant TMZ mode as seen by invoking Faraday’s

law and employing the procedure below. (The situation of

nonzero JY and Jz and its creation of higher order TM,

modes or hybrid modes are discussed in Appendix I.)

Using Poisson’s equation (c is the dielectric constant)

v. E=:(p–n+Nd– Na) (5)

two sets of zeroth-order (dc case) and first-order (ac case)

equations are obtained by placing (1) into (2), (3), and (5).

Restricting the solution to a small differential cell in the z

direction (y= O), the dc case yields

dEXO
—=:(Po-no+Nd-%)

dx

a
‘=qRd. (no~po)

dx

dJpox _
— ‘qRdC(no, Po)

dx –
dn o

Jo. = qp,, (E.o)noExo + qD. (E.o) dx

dpo
Jpox = qPp(E.o)poE.o – qDP(E.o)~

and the ac case yields

(6a)

(6b)

(6c)

(6d)

(6e)

(7a)

7b)

7C)

(7d)
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‘ere Pnux, p..x = du.X,PX(Ezo)/dE.X, where E is the total
electric field magnitude. J, is the total ac terminal current

density. Using the dc equations (6) subject to satisfactory

BC, no(x), po(x), and EXO(.X) are known in (7). Equations

(7) represent a simultaneous coupled system of four equa-

tions in four complex unknowns, or a coupled system of

eight equations in eight unknown real and imaginary vari-

ables. All the other ac variables of interest can be found

once the coupled (7) set is solved. The ac equations (7) are

solved for a chosen Y;, l?X determined through

Ex=(&;x - L/(@) (8)

and the propagation constant is determined as follows.

Differential cells which characterize transport in the x

direction can subsequently be stacked in the z direction to

obtain the propagation constant y. This procedure [12]

requires the calculation of an impedance based upon the

transport. The two-terminal complex impedance Z (L?. mz,

in the x direction) per unit area is found from

(9)

~ i% a small-signal impedance and does not depend upon

~. V. is the applied or resultant voltage (from the conduc-

tor strip to the ground plane under the semiconductor),

given as

(lo)

The propagation is directly given as

r

japl
~= —

z“
(11)

The correct sign for y is selected based upon the required

propagation direction.

The recombination rate R can be expressed as

pn – n?
R=

a(n, p)

where [10], [13], [14]

(12a)

[

c; 1 (12b)

a(?z, p)= %( P+ Pt)+~p(~+~t) (12C)

(c.n+cPp)-’. (12d)

The denominator a(n, p ) corresponds, respectively, to di-

rect, Shockley–Read–Hall, or Auger recombination in (12);

co, c., and Cp are carrier capture rates for the direct and
Auger processes. For illustration, the Shockley–Read–Hall

recombination rate is used to specify R. For a( n, p) in

(12c), n,, Tn, ~p, n,, an d p, are, respectively, defined as the

intrinsic density, the electron and hole lifetimes for single

level traps, and the electron and hole densities obtained by

replacing the quasi-Fermi energies by the trap energy E,

(in the normal n and p Boltzmann expressions). Conse-

quently,

pono – n?
R~,, =

TZ(Po+Pt) +~p(~o+~t)

no~ – poll
R,C =

%( PO+ Pt)+~P(no+no

(13a)

+ (Po~o-W,?F+@

[7~(po+P,)+%(no +n,)]2 “ ‘13b)

Here midgap traps with Et= E, (intrinsic Fermi energy)

are used, and Tn and rP variations with carrier densities are

neglected.

For the unipolar n-GaAs material case, R = O and p ~

and Dn are related through the Einstein relationship, Dn =

k~Tpn/q. V. was taken to be [15], [16]

P.= [P.o+ V..E3/E:] [l+(E/Eo)4]’1 (14)

where P*O, v.,, and E. are, respectively, the low field

mobility, the electron saturation velocity, and a reference

electric field. p ~a was calculated from (14) as

=Pn[4-3PnO/Pn] [l+(E/EO)4] -1. (15)

GaAs parameters were set for a temperature of 300 K and

a doping concentration N~o =1017 cm-3 at I.L.o==5500

cm2/V. s, v~, = 8.5x106 cm/s, and E.= 4.9 kV/crn [15],

[16]. Intrinsic density n, and relative perrnittivity c,, were

set at 1.8X 106 cm-3 and 13.1 respectively [111.

In the bipolar silicon material case, R #O, and p., ~ is

taken to be [14], [17]

Pn,P=fl(n,p)O[~ +P(n,p,OE/~(n,p)S]-l (16)

with the Einstein relationship utilized. K(H,~). were derived

from (16) as

P(rz, p)a=P~n, p)/’’P(n, p)O. (17)

For a step junction in silicon, the parameters were set for

300 K temperature and doping concentrations Ndo = N..

= 1017 cm-3, creating the doping profile

iv(x) =Nd(x)-Na(x)

= ~dou(x – 1/2) – ~aOu(– X + 1/2) (18)

with tn= 2.6x 10–5 s, r- = 2.3X 10–6 s, P.. = 825 cm2/

V.s, pPo = 340 cm2/V”s, v..= 1.0X107 cm/s, and up, =

9.5 X 106 cm/s [11], [14], [17]–[20]. In (18), 1 is the semi-

conductor thickness and U(x) is the unit step function. n,

and (, were set at 1.45 x 1010 cm-3 and 11.7 respectively

[11].
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III. NUMERICAL APPROACH AND

BOUNDARY CONDITIONS

The ac (or dc) transport equations (7) can be put into a

convenient form for numerical solution by defining the

normalizations [13], [21], [22]

qLD ~ L~
E=—

Do n

k~T
.7= —J -

‘=~r
fi=—

qn ,DO nr

where Do is a constant and

is an extrinsic Debye length based upon a chosen reference

density n, ( k~ is Boltzmann’s constant and T the tempera-

ture). For the n-GaAs material case Do= 3.0 cm2/s and

n, = 1.0x 1010 cm– 3 (de), n, (at), and J; was chosen to be

5.6 X 10-10 A/cm2 (1 percent of the calculated metal-

semiconductor junction dc reverse saturation current). In

the Si material case, Do.= 1.0 cm2/s and n,= n, (de),

1.0 X 106 cm-3 (at), and ~ =1.5X 10-11 A\cm2 (1 percent

of the calculated bipolar junction dc reverse saturation

current).

Using the quasi-Fermi potential concept [10], [13], [23],

[24], the electron and hole densities can be eliminated in

the dc equations (6) with the substitutions

no=nle q($–%~lbT p.== nieq(@~-$’)/kfiT. (20)

Here i$P and OH are, respectively, the hole and electron

quasi-Fermi potentials and + is the electrostatic potential

defined by

d+

dx
—=– EXo. (21)

The potential normalization used is

(22)

Boundary conditions need to be chosen for both the ac

equations (7) and the dc equations (6) so that solutions can

be sought for y. Metal–semiconductor BC’S are required at

x = O and x = 1. For the dc case, Dirichlet BC’S are speci-

fied for ~ ( = – EZ/KbT) and ~~ and ~P. Thermal equilib-

rium [~. = & in (20)] and charge neutrality [ d~Xo /d= = O
in (6a)] are assumed when a contact is ohmic. Under these

assumptions [10], [13]

$n=$p=~ (23)

for an ohmic contact. Here ~(x)= ~~(x) – fia(x)._ ~, is

the applied terminal potential at the contact, and is V. or O

at, respectively, x = O, 1. When ii, << ~, the logarithmic

term in (23) is nearly ln(~,ii,). For ~ <0 and ii, << 1~1,
the second term may be converted into a more convenient

form for numerical evaluation by multiplying the numera-

tor and the denominator of the argument by ~ minus the

square root term (taken always to be the positive branch).

When the contact forms a Schottky barrier,

J=~–iB+Eg/2 (24)

and s. = ~P = PC. Equation (24) is based on an idealized

Schottky contact. The difference between the conduction

band edge and the intrinsic Fermi energy, E= – E,, is

equated to half of the bandgap energy E~ (here normalized

to kbT). ~~ is the normalized Schottky barrier voltage

height, given by the difference ~Wl– ~, between the nor-

malized metal work function and the electron affinity of

the semiconductor [11]. Dirichlet BC’S for the ac case are

based on the assumed local equilibrium condition (fixed

change densities in time) of the carriers at the contacts.

Perturbed ac variables ii and j3 are, at x = 0,1,

E=p=o. (25)

Boundary conditions (25), invoking (7a) and (7b), are

equivalent to Neumann BC’S on the current densities at

X=o, l:

(26)

Systems of dc equations (6) and (21) and ac equations

(7), subject to the BC’S (23), (24), and (25), are solved on

the NRL Cray X-MP/24 computer using the Cray Fortran

programming language and an IMSL finite difference dif-

ferential equation library subroutine [25], [26]. Since the

IMSL subroutine necessitates the use of real variables, in

actuality ac equations (7) constitute a system twice as large

as listed. The finite difference approach utilizes trapezoidal

rule discretizations over an adaptive nonuniform mesh,

which provides for equidistribution of local truncation

error. It is a variable high-order method relying upon the

deferred correction technique. Enhanced convergence of

the solution for the nonlinear dc system of equations is

achieved through damped Newton iterations. The resulting

linear system of equations has block quasi-tridiagonal ma-

trices which are solved by LU decomposition with alternat-

ing partial pivoting. Computations proceed until the esti-

mated relative error of each variable across the entire mesh

in less than a specified relative error tolerance parameter S.

The choice of independent variables ~, ~~, and & was

made because they are all the same order of magnitude
and typically do not change more than one order of

magnitude across the whole structure. Therefore the accu-— — — — —
racy of $, ~~, and +P (and, accordingly, E.xo, J~oX, JPox,

iio, and jo) across the mesh can be controlled precisely by

8. Exponential nordinearities in the dc equations pose no

difficulties for the robust numerical method. For the lin-

earized system of ac differential equations, n, and Do can

be selected in conjunction with ~ and 8 to provide accu-

rate values of the ac variables over many orders of magni-

tude. Judicious choices for n,, Do, ~, and 8 are necessary
to avoid S becoming an absolute error control parameter

in the convergence criteria for a variable when it is below



KROWNE AND TAIT: PROPAGATION IN LAYERED BIASED SEMICONDUCTOR

unity, thereby possibly reducing accuracy. The IMSL sub-

routine recognizes linear differential equation systems and

implements a very efficient algorithm. Required dc quanti-

ties are obtained by linear interpolation of stored dc values

in common area arrays.

Good initial values (Appendix II) for the iterative

Newton approach to converge are needed for the set of dc

equations (6) and (21). First the equilibrium solution is

found by entering values obtained from approximate ana-

lytical expressions (derived from the depletion approxima-

tion for junctions) over a selected nonuniform mesh.

Nonequilibrium solutions~re next found by incrementing

the applied voltage (by AV=) and using the previous solu-

tion as input initial values. Following this procedure leads

to rapid convergence for a solution at an applied voltage

F=. For each successive bias voltage, the previous solution

must_be modified slightly to satisfy new BC’S on ~, T,,

and I#P (see Appendix II).
Initial values for the ac variables are taken to be zero

across the same final nonuniform mesh employed for the

dc solution. Even for large ac terminal currents ~, this

prescription works well. Jacobian matrices which charac-

terize the dc and ac differential equation systems are found

by taking the partial derivatives of (6) (and (21)) and (7).

These matrices are utilized by the IMSL DVCPR finite

difference equation solving subroutine, and defined as

d(d~/dl)/d~, where the indices i, j = 1,2,0 ... M and ~

is an unknown variable in the equation system. M is equal

to the number of equations (or independent variables) in

the system. For the dc system M = 6 where all the dc

variables are real quantities. The ac system has complex

variables, and is numerically solved by breaking up each

variable into its real and imaginary components. This

decomposition creates an additional four ac equations so

that M =8. Typically, a single dc bias point is calculated

in 1 to 8 s, depending upon the final number of mesh

points. The maximum number of mesh points was set at

2000. A single ac frequency calculation usually took 1 to

4 s, again depending upon the final number of mesh

points.

The accuracy of propagation constants y determined

from this computer solution of the ac set of equations was

checked independently against those calculated from an

analytical moments-of-Boltzmann-equation analysis [12]

for a simple test case. In this test, spatially uniform dc

variables and single carrier transport at a 300 K lattice

temperature are assumed, and the d/d t and d ( nU2)\dX

terms are dropped in the momentum balance equation

[12, eq. (2)]. For the ac BC’S (25) imposed on the perturbed

carrier density, y is given by (11), where

(
–1

Tpq%ol

)(

TP2q 411 ~

z= — – j~cl a262+ ~
m“ )

. (27)

For a 3-pm-long, 1016 cm-3 doped n-GaAs sample with

~.= 8500 cm2/V. s (7P= 3.29 x10-13 s) and ~=10 GHz,

(27) yields

Z= 2.20299 x10-5– jl.15166x 10-7 !2”cm2

715

while the numerical ac code yields

Z= 2.20297x 10-5 – jl.15028X 10-7 fJ. cm2.

From (11), it can be seen that both approaches give the

same propagation constant in this test case,

y=a+ j~=73.1+ j73.5 cm-l.

IV. NUMERICAL RESULTS AND EXP~RIMENTAL DATA

A, Schottky Transmission Line on n-GaAs

The first structure examined is a voltage-variable phase

shifter employing a 1.5-Pm-wide, 1600-pm-long Au,fPt/Ti

Schottky transmission line on an n-GaAs epitaxial layer

(NdO = 1017 cm– 3, 1= 2 pm thick) [1], [27]. Underneath

this layer is an n ‘-GaAs epitaxial layer which is ,electri-

cally accessed through large ohmic contact pads connected

to ground over their full 1600 pm length. This multilayered

mesa structure is supported by a thick semi-insulat-

ing GaAs substrate. For the numerical calculations, the

Schottky barrier height for Pt/Ti metallization on n-GaAs

was taken to be +~ = 0.81 V [28], and the n+ layer was

treated as the virtual ground plane.

The dc simulations were carried out over an applied

voltage V. range of – 3.5 V to +0.5 V. The calculated dc

electron particle currents were – 5.6x 10-8 A/cu? and

13.2 A/cm2 for the – 3.5 V and + 0.5 V bias limits,

respectively. ‘The dc spatial profiles were then utilized in

the ac simulations, which were run with impressed termi-

nal currents operating at frequencies ~ from 1 GHz to

20 GHz. Fig. 2(a)-(c) shows the magnitudes and phase

angles (with respect to the terminal current) for the ac

electric field ~., the electron current density ~HX, and the

electron density fi respectively for a dc bias V. of + 0.5 V

and a frequency of 1 GHz. Likewise, Fig. 3(a)–(c) shows

the same ac quantities, but for a dc bias V. of – 3.5 V and

a frequency of 10 GHz.

From these figures, it is evident that the width of the

transition areas between space-charge depletion regions

and bulk regions can be a large percentage of the de@etion

region width, and that these transition areas “penetrate”

well into what would typically be categorized as the bulk

region. In the V. = +0.5 V bias example, the transitional

zone width for the ac electric field, Fig. 2(a), is nearly

100 percent of the depletion region width, and stamts at

approximately x = 0.06 pm, which is the edge of the deple-

tion region as calculated from the analytical expression

Xd = /2+1 – va)/(@dO)

where ~, is the built-in potential. Similarly, the transitional

area begins at approximately x = 0.25 pm (edge of analyti-

cally computed depletion region) and extends about

0.1 pm further into the n layer for the V. = – 3.5 V case

(Fig, 3(a)). Unlike field solutions which assume a “hard,”

distinct interface between the depletion region (o= O) and

the bulk region (u = constant), these “soft” transitions are

more realistic and can be simulated only with a combined

transnort-fieldt atmroach which can adeauatelv describe
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Fig. 2. GaAs Scho~tky line ac magnrtude and phas~ spatial profiles of
(a) electric field EX, (b) electron current density ~,X, and (c) electron
density ii for VU = +0.5 V and ac frequency f of 1 GHz. Parameters

are set at NdO =1017 cm- 3, C+B=0.81 v, 1=2 pm, ~d T=300 K.
Abscissas show depth into GaAs from the distributed Schottky contact

atx=O.
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Fig. 3. GaAs Scho~tky line ac magnitude and phas~ spatial profiles of

(a) electric field ~Y, (b) electron current density Jht, and (c) electron

density X for Vu = – 3.5 V and ~ =10 GHz. Parameters are the same as
in Fig. 2.
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Fig. 4. GaAs Schottky line normalized ‘phase constants ~//30 versus ~
for Va = – 3.5 V and + 0.5 V. Transport-field analysis (—-); full-wave
field analysis (–---); expenmentaf data (D).

the transverse current characteristics. Furthermore, by al-

lowing the electron mobility to vary with the electric field

as shown in (14) and (15), negative differential conduc-

tance (NDC) effects may be present in regions of the

structure where the electric field magnitude is on the order

of the threshold field (approximately 4 kV/cm in GRAs).

These field magnitudes occur in the transition areas. In

fact, the magnitude “dips” and phase angle changes in the
ac electron current density and electron density profiles

(Figs. 2(b) and (c) and 3(b) and (c)) are ‘caused by the

GaAs mobility model which admits NDC. Monotonic

mobility versus field curves, such as in Si, do not generate

these NDC characteristics. If the NDC effect in these

localized regions is strong enough, it is possible that the

attenuation constant of the GRAS medium will be negative,

thereby signifying distributed gain for the structure (see

further discussion below). It is impossible to reproduce this

gain result using a field solver which employs a single,

positive-valued, constant conductivity for the transport

description. Also, the transitions in the electric field and

electron current density profiles (Figs. 2(a) and (b) and

3(a) and (b)) indicate the spatial transformation of a

displacement-dominated current to a particle (electron)

dominated current. For example, in the V.= – 3.5 V bias

case (Fig. 3(a) and (b)) the displacement current, jae~X =
— at l?. imag= ~, is dominant from x = O to x = 0.25 pm

(area largely depleted of -mobile carrie~s), whe~eas the

electron particle current, .J.X,,ed = qn ~pn Ex,red = Jf, (p. =

I-L.o1 becomes dominant beyond the transitional ZOne edge,
x ~ ().35 pm (bulk region filled with carriers).

The wave propagation behavior may be obtained by

calculating the complex propagation constant (y= a,+ j~)

for each ac frequency as in Section II. The results of these

calculations are given in Figs. 4 and 5 and Table I, and are

compared with a full-wave parallel-plate field-type solu-

tion method [6] (with 1= 2 pm, u = 88.11 S/cm, Ndo =

1017 cm-3, +~ = 0.81 V) and with experimental data [1],

[27]. The depletion layer is represented by a perfect insula-

tor in the full-wave analysis, and its thickness is deter-

mined from dc analytical equations (provided in Appendix

II). Fig. 4 shows the normalized phase constants (or
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Fig, 5. GaAs Schottky line attenuation constants, a (dB/cm), for Va =
– 3.5 V and + 0.5 V. Semiconductor transport-field and microstrip

conductor analysis (—); experimental data (u).

TABLE I

COMPARISON OF THEORETICAL TRANSPORT-FIELD VERSUS FULL-WAVE
SEMICONDUCTOR ATTENUATION CONSTANTS, a, (db/cm), IN THE

GAAS SCHOTTKY LINE EXAMPLE FOR Two VALUES OF
APPLIED DC BIAS VOLTAGE Va

F (GHz) Attenuation Constant (dB/cm)

–3.5V +0.5 v

Transport Full- Wave Transport Full-Wave

1 0.005 0.006 –0.379 0,054

5 0.116 0.151 0.384 1.352

10 0.464 0.606 2.768 ~ 5.406

15 1.044 1.363 6.741 12.15

20 1,855 2.422 12.30 21.58

Parameters are set at Ndo = 1017 cm-3, OB = 0.81 V, 1= 2 pm, and
T= 300 K.

“slow-wave” factors) ~//30 = c/vP, where c and VP are the

speed of light in vacuum and the wave phase velocity,

respectively, as a function of frequency for the two V.

cases. The two types of numerical calculations display no

visible dispersive characteristics (less than 0.1 percent), but

the transport-field /?/~. values are slightly smaller. This

difference is consistent with the fact that the transitional

areas predicted in the transport-field approach effectively

increase the nominal depletion depth, and the phase con-

stant is correspondingly smaller. On the other hand, the

experimental &/& values show frequency dependence

caused by field penetration into the virtual n+ epitaxial

ground plane and substrate. The extent of this penetration

is a function of the conductivity, the frequency, and the

structural dimensions of these layers. Since the effective

ground plane depth is greater than the n epitaxial layer

thickness (2 pm), the experimental ~//30 values are higher

than the ones numerically calculated. Agreement, neverthe-

less, becomes very good at higher frequencies, as the

effective ground plane depth decreases, and approaches

2 pm.
The GaAs losses predicted from the numericaI(y ob-

tained attenuation constants a, are shown in Table I for

the 1600-pm-long structure. For the V. = – 3.5 V case, the

losses are small due to the mostly nonlossy “dielectric”

nature of the relatively wide depletion width. Material
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losses in the V.= +0.5 V case are larger for frequencies

greater than 5 GHz since the depletion width is extremely

narrow. For frequencies less than 5 GHz, however, NDC

characteristics of the Schottky microstrip structure with

applied bias of V. = +0.5 V are simulated by the trans-

port-field method, and a very small gain is predicted.

Actually, the total attenuation constant for the structure,

a=a, +ac, is dominated by ohmic loss in the metallic

microstrip conductor (a,), and this loss mechanism swamps

out any gain contribution from the GaAs semiconductor

material (negative at). In order to estimate this conductor

loss, a microstrip computer program was utilized with the

experimental ~/& values providing the effective permit-

tivity values ( .s.ff ) and effective ground plane spacings

(be,, ) as follows [1]:

‘.,, = (#/BO)’ (28a)

and

beff(cm)= (6df/~)/2f(@t – ~a)/’(@dO) . (28b)

The thickness t of the microstrip line is 0.63 pm.

The Au/Pt/Ti microstrip resistivity is taken as pAU=

2.44 x 10-6 Q. cm. aC (dB/cm) is calculated by a standard

method [29]. The sum of the theoretically calculated semi-

conductor and metal contributions to the loss is plotted

against the actual experimental loss data in Fig. 5 for the

two V. cases. In these comparisons, the calculated loss

values are smaller than the experimental ones, since the

numerical simulation accounted for neither field penetra-

tion into the virtual n+ epitaxial ground plane and sub-

strate nor other sources of experimental loss. The same

frequency behavior, however, is observed. At lower fre-

quencies, the approximate V behavior due to the metallic

conduction mechanism of the strip is evident, but the

semiconductor losses are seen to contribute as well at the

higher frequencies, where the loss increases with frequency

at a rate somewhat higher than U.

B. Transmission Line over Si Bipolar Junction

The next structure examined is a transmission line inter-

connect over a Si bipolar step junction with a very small

transverse dimension (3 pm). Although interconnections

generally lie over passive semiconductor material, they

must also pass in the vicinity of, or sometimes over, active
devices which have micron and submicron feature sizes for

higher speed (GHz digital and logic pulse) and denser

circuits. The wave propagation behavior through these

active, inhomogenously doped semiconductor regions is

determined by considering the two-carrier (electron and

hole) transport interaction with the electromagnetic field.

The dc simulations were carried out over an applied

voltage V. range of – 3.0 V to +0.3 V. (The metallurgical

junction is located at x = O, and distances of 0.4 pm are

shown in the figures below on both sides of this junction.)

Minority carrier current densities J~oX and JPOYin, respec-

tively, the left- and right-hand sides of the semiconductor

‘1---/ I
—————_360

‘E . . . . . . . . . .

< lo”” \
,.,

\
,,,’

u
n
3
~ \

270

$ ,o-~,
I

a
2

—1

>

>
03
.

>
+

I
—: e

FJ E
z 10””
. \

n

n

I

H

;
cc
~ ,.-14 I

f-l I

I

10”>’ I
-40 -2.0 00 20 40

DISTANCE (O.lwm)

(b)

103 I I

I 1360

DISTANCE (O I#m)

(c)

Fig. 6. Si transmlssjon line ac magnjtude and phase spati# profiles of

(a) electric field E. (b) electron <,. (----) and hole JZY (– -.)

current densities, and (c) electron Z (–––– ) and hole j (— .–. )
densities for V. = – 3.0 V and f’= 10 GHz. Parameters are set at
NJO = Ndo = 1017 cm-3 and T = 300 K. The metallurgical junction 1s
located at x = O. and the distributed ohmic contract and the ground
plane are located at x = – 1.5 pm and x = 1.5 pm, respectively,
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Fig. 8. ,(,alculated normalized phase constants, ~/~o, and semiconduc-
tor attenuation constants, a, (dB/cm), for the Si transmission line
containing an abrupt bipolar junction at two values of applied dc bias
voltage Vd. Parameters are set at Ndo = N.. = 1017 cm–3, 1= 3 pm, and

T= 300 K.

volume are unequal, J.oX = 2.4JPOX.A smaller discrepancy

holds for the ,majority current densities, J.oX: 1.02 J-POX.In

contrast to the reverse-bias semiconductor volume situa-

tion, the forward-biased Va = +0.3 V case shows that

carrier injection is so significant that in the p areal J.OX

exceeds JPOX= 2.35JPOX, and in the n area Jpox = 0.41 Jnox.

The ac slmplatioris were run with impressed terminal cur-

rents operating at frequencies from 1 GHz to 20 GHz. Fig.

6(a)-(c) shows the magnitudes and phase angles (with

respect to the terminal current) for the ac electric field l?X,

the electron ~nX and hole ~PX current densities, and the

electron fi and hole ] carrier densities, respectively, for a

dc bias of P’a= – 3.0 V and a frequency of 10 GHz. Fig.

6(a) and (b) demonstrates that the displacement current

density, juc~X = __ti~~X,i~a~ = ~, is predominant for

– 0.14 ~ x ~ 0.14 pm, and that for [xl >0.14 pm, the hole

Jx,red = WOPP~.,,..l = ~ (PP = IJPO) Or the electron

~x,re~ = qrropnl?x,red w ~ (pn = ‘pno) particle current den-

sity predominates. Fig. 7 gives the results for a dc forward

bias of Va = +0.3 V and ~ =10 GHz.

The complex propagation constants (y= a,+ j~) are

calctilated for several ac frequencies and shown in Fig. 8.

Slow wave factors, /l/~o, are found to be similar to those

in the GaAs Schottky microstrip case for both forward and

reverse applied bias and display a slight frequency disper-

sion. The Si semiconductor material loss, however, is seen

to be very large. These large attenuations may be at-

tributed to the relatively small electron and hole nobilities

and to the presence of two “ 10SSY” bulk regions which

constitute 90 percent of the structure’s length, even at

Va = – 3.0 V reverse bias.

V. CONCLUSION

A transport-field formulation and solution method to

find the small-signal propagation constant y has “been

presented for transmission lines over an inhomogeneously

doped semiconductor substrate, under transverse dc bias.

Net doping concentration N(x) = Nd(x) – N.(x) allows

for an arbitrary distribution in the x direction. Internal
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junctions and severely graded areas within the semicon-

ductor volume may be treated besides more slowly varying

distributions. The transport model includes electrons and

holes, recombination-generation processes, dc and ac

field-dependent nobilities and diffusion constants, and

boundary condition contact effects. The dispersion of the

propagating wave due to doping inhomogeneity, substrate

loss, and other transport effects is accounted for by the

self-consistent approach used here. The dominant TM=

mode method should be applicable for strip widths w >1

= transverse semiconductor thickness, and millimeter-wave

frequencies based upon a maximum transport model fre-

quency limit inversely proportional to the energy relax-

ation time [30]. For GaAs, this limit is 50–100 GHz,

depending upon the maximum dc electric field.

Two layered structures of interest to monolithic mi-

crowave integrated circuits and high-speed digital inte-

grated circuits were studied. The first structure, a GaAs

voltage variable phase shifter, is representative of applica-

tions found in monolithic microwave integrated circuits.

The second structure, a transmission line over a Si bipolar

junction, is representative of applications found in high-

speed digital integrated circuits. Both structures addressed

the problem of present interest, i.e., the modification of

propagation characteristics due to altered transport condi-

tions caused by the applied dc bias. This problem is of

special interest where interconnections pass into regions

near or over active devices.

The solution method calculated the dc carrier densities,

quasi-Fermi potentials, dc electric potential, and dc elec-

tric field in order to find the correct ac carrier densities,

electric field, and current densities. The propagation con-

stant y was then determined from the ac information for

both structures. Detailed transport variable information,

as provided by the solution method, allows insight to be

gained about the location of ac and dc carriers, the relative

contributions of particle and displacement currents to the

total ac current, and other valuable facts. This transport

variable information provides insight into how the trans-

port affects the calculation of y. For example, the redistri-

bution of carriers in the vicinity of junctions such as the

Schottky barrier in the GaAs phase shifter structure is

shown to influence the propagation constant. Specifically,

the y result shows that a simplified full-wave field solver,

without the more detailed physical transport processes

provided in our model, overestimates the wave slowing.
Good agreement with experimental data is obtained for

that particular example when ~ >10 GHz and V.= 0.5 V.

APPENDIX I

If z-component currents are retained (except J,O = 0),

then

——– cdjd+ jow(ix+ L) (Ala)

——– (fpx= + jup(fn:+~=) (Alb)

d-x
—–yJ, =jQqfi+ qRac(fi, p:no, po)
dx

(Ale)

d;. .
— – yJP, ==
dx

–jU@–qRac(fi, P; no, po) (Aid)

~x=q[pna, (Exo)no~.. +P. (~xo)~.Kofll

(Ale)

q = f&ax(~xo)Pofix + PP(%O)%OF1

(Alg)

Equations (6) must be solved first, subject to appropri-

ate BC’S, in order to provide the dc values required in (Al)

which vary spatially. By Faraday’s law,

H1 d~x d~Y
ti==— — — =0.

jcop ay – ax
(A2)

Therefore the propagating wave is a TM= mode. Thus

E=+JWZ-Y:l(A3a)

1 [1 d~=
iiy=— ykx + —

jtip dx “
(A3b)

Here k2 = cd2tp. Dropping (Ala) from (Al) and employing

(A3a) allows a coupled set of nonlinear, ordinary differen-

tial equations to be solved for five ac variables, from which

all of the other variables may be found:

d{

~=[’QqP(Pna.no+ Ppa2Po)-Y2-k2]i z

diz
—={
dx

(A4b)
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[

dii 1 “ 1—–—–‘“;~+&’xx–‘“pp””xnoY
dx – qDn Dn(y2+k2) “

P.axnoy . P.
.$– ~EXoG

‘Dn(y2+k2) ~

d~

[ 11juPqPpaXPo _ ~ ~ ~
_—

dx – qDp y2+k2 ‘x

— ‘P”xpoy[+ ~EXoj3
Dp(y2+k2) p

(A4e)

@PPPaxpo .

Dp(y2+ k2) ‘p”’

(A4f)

(A4g)

In (A4) $ is a dummy variable eliminating the second-order

spatial derivative in (Alb), and the last equation allows y

to be self-consistently detern-@ed to satisfy the remaining

suite of equations [25]. If Ez and v. E are sufficiently

small so that the first two field equations in (A4) can be

decoupled from the remaining five, and a small differential

cell examined so that y ~ O, then (A4) reduce to the

fundamental TM= mode case in (7).

It is possible to include y-component ac perturbations

by retaining extrax eq~ations such as (Ala), (Ale), and

(Alg) containing EY, JnY and JPY varia}les~ Such an inclu-

si~n creates a hybrid mode because EY~Jn ~p~ 1(EXO) and

dEy/tfx # O in (A2). In general, field-dependent nobilities

will not be spatially constant, as can be seen when examin-

ing the variation of p. across a pn junction area. Thus ~Y

cannot be constant and TM modes are excluded.

APPENDIX II

In order to start the dc numerical calculations, initial

values for the spatially dependent variables throughout the

inhomogeneous semiconductor volume are chosen for the

equilibrium solution over a selected nonuniform mesh by

using the analytical expressions derived from the depletion

approximation for junctions. These equilibrium formulas

are provided below for the normalized variables. For the

unipolar n-GaAs Schottky line case, we use

i=wn)+&-q/2

Here, Z. and ~1 are the normalized depletion region depth

and built-in potential.
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In the bipolar Si abrupt junction case, we use

Here, I. and 1P are the depletion region depths extending

into the n and p regions, respectively, with the metallurgi-

cal junction at X = O. New trial values of the variables at

applied bias voltage increments A~a can be chosen:

J(x)-ij(l) _
~(x) =ij(x)+ ~(o)_-(l)-AVa

[

A~a
E:O(x) = 1+ -

1+(0)-J(l) ‘“’o(x)

~:(x) =ij~(x)-~(x)+~n(x)

i$(x)=~~(x) -J(x) ++p(x)

Z,x(x)=zo.(x) ~ox(x) =~ox(x). (AT)

Notice that the second equation comes directly from the

first
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