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Propagation in Layered Biased Semiconductor
Structures Based on Transport Analysis

CLIFFORD M. KROWNE, SENIOR MEMBER, IEEE, AND GREGORY B. TAIT, STUDENT MEMBER, IEEE

Abstract —A  transport-field parallel-plate formulation and solution
method to determine the small-signal propagation constant is given for
wide microstrip lines over an inhomogeneously doped semiconductor sub-
strate of small transverse dimensions. Included in the detailed transport
model are two carrier species, recombination—generation mechanisms, de
and ac field-dependent mobilities and diffusion constants, and boundary
condition contact effects. A transverse dc bias condition is applied. Struc-
tures numerically simulated are a voltage-variable GaAs distributed
Schottky barrier phase shifter and a transmission line over a Si bipolar
junction. Numerical data based on a finite difference technique are gener-
ated on carrier densities, electric potentials and fields, and current densi-
ties. Propagation constant calculations were favorably compared with
those calculated by both full-wave field analysis and moments-of-the-Boltz-
mann-equation analysis for some less general cases. y results for the GaAs
structure are compared with available experimental data.

I. INTRODUCTION

AVEGUIDING structures loaded with extrinsic

semiconductor material are utilized in both mono-
lithic microwave integrated circuits (MMIC’s) and high-
speed digital large scale integrated (LSI) and very large
scale integrated (VLSI) circuits. Distributed FET and IM-
PATT amplifiers, voltage-variable phase shifters, and tun-
able attenuators are several examples of distributed MMIC
devices which employ the interaction of the charge carriers
with the electromagnetic fields in semiconductors [1]-[4].
Also, microstrip and coplanar transmission lines over lay-
ered semiconductor media are used for interconnections
between active devices in MMIC and VLSI technologies.
The interconnections generally lie over passive semicon-
ductor material, except in the vicinity of active devices
where a transition region exists.

'Analysis of metal—-insulator—semiconductor (MIS) trans-
mission lines and distributed Schottky contact lines has
been carried out in the past with field approaches utilizing
a single constant conductivity to model each doped semi-
conductor layer [5]-[9]. These field approaches, which
range in complexity from quasi-TEM to full-wave analy-
ses, have been successful in predicting the performance of
MIS structures and uniformly doped, biased Schottky
structures. This success is due to the lack of transverse
currents because of a distinct insulator—semiconductor in-
terface (MIS structures) and uniform conductivities in
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individual semiconductor bulk layers (MIS and Schottky
structures). When the semiconductor volume contains sev-
eral junctions (such as pn and n™* n) or intentionally graded
doped areas, the constant-conductivity assumption no
longer always represents the transverse transport accu-
rately.

For example, diffusion of carriers away from the transi-
tional zones between bulk and space-charge depletion re-
gions in the vicinity of a junction causes a change in the
field-carrier interaction within a few Debye lengths of each
regional interface. Static dc characteristics as well as ac
characteristics of the transport behavior will be altered. As
a result, wave propagation behavior will also be changed.
These additional considerations are especially important
for ‘structures which have very small transverse dimen-
sions, such as micron and submicron feature sizes, which
are increasingly seen in higher frequency (millimeter wave),
higher speed (GHz digital and logic pulse), or denser
circuits.

In this paper a transport-field parallel-plate formulation
and solution method to find the small-signal propagation
constant y is presented for wide microstrip lines (with
respect to transverse dimensions) over an inhomoge-
neously doped semiconductor substrate. The formulation
approach includes dual carrier transport (electrons and
holes); recombination—-generation mechanisms (direct band
gap, Shockley—Read-Hall, and Auger); dc and ac field-
dependent carrier mobilities (u,(E), ¢, (E), p,,(E), and
ppo( E)); field-dependent diffusion constants (D,(E) and
D,(E)); and boundary condition contact effects at the
guiding structure walls (ohmic and Schottky contacts). The
E-field dependence of mobility is important since it allows
negative differential conductivity to occur in some regions
of a structure possessing a III-V semiconductor material.

The theoretical approach contained herein avoids the
aforementioned difficulties when a field-transport model
possessing an oversimplified transport description of the
carriers is used. Section Il covers the construction of the
field-transport model of the microstrip structure. A simul-
taneous set of coupled ac equations are obtained which
describe TM, electromagnetic propagation. The method
yields the dominant mode propagation constant y for the
strip over passive or active semiconductor substrates and
retains dispersion through a detailed transport model. Sec-
tion 111 discusses the numerical finite difference technique
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Fig. 1. Cross-sectional sketch of propagation structure. Microstrip con-

ductor les on top of an inhomogeneous semiconductor. Bias consists of
applied dc voltage ¥, and ac current J,.

and boundary conditions applied toward solving the large
number of simultaneous sets of dc and ac equations.
Section IV presents numerical results for two demonstra-
tive structures and provides comparison to some experi-
mental data. The structures are a voltage-variable phase
shifter employing a distributed microstrip Schottky contact
on an n-GaAs semiconductor substrate and a microstrip-
like transmission line over an active bipolar junction in Si.
The approach presented here may be appropriate for char-
acterizing propagation properties of gate, source, and drain
lines in large-width MESFET and JFET devices at mi-
crowave frequencies where the characteristic lengths ex-
ceed the epitaxial layer thickness [3], [9].

II. FIELD-TRANSPORT FORMULATION

Small-signal perturbations of the variables are assumed.
For an arbitrary variable »v(r, t),

v(r,t)=vy(r)+i(r)e 7 (1)
the sum of a dc term and an ac term with a propagation
constant y (v may be a vector). Applying the parallel-plate
assumption that the strip widths are large, J/dy terms in
the analysis to follow are dropped. Fig. 1 shows the
geometry of the structure in cross section. The effects of
the conductor on the propagation behavior are accounted
for by an ohmic or Schottky boundary condition (BC,
whichever is appropriate) and an independently calculated
attenuation constant «_ based upon the skin effect. This
surface lies on the semiconductor, which may possess an
arbitrary doping profile of donors N,(x) and acceptors
N,(x), leading to a two-carrier transport system. Thus the
electron »n and hole p concentrations can be constant,
rapidly varying, or lead to junction areas where space-
charge depletion regions exist.

In the semiconductor volume the carriers and field obey
the current continuity relations [10], [11]

dn 1

E——q-v J,—R,(n, p) (2a)
ap 1

E——;V —R,(n,p) (2b)

where J,, J,, R,, R, and g are, respectively, the particle
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electron and hole current density vectors, the electron and
hole net recombination rates, and the electronic charge
magnitude. R, = R, = R is specified to avoid a net sink
(or source) of charge (subtract (2b) from (2a) to see this

point). A local field representation is used for J, and J,:
J,=—qnv,+qD,Vn (3a)

= gpv, —¢D,Vp (3b)

0, = —p,E (3¢)

v,=p,E. (3d)

Here the electron and hole mobilities and diffusion con-
stants are, respectively, p,, p,, D,, and D,, which depend
upon the local electric field E. The total particle current
density is

J=J,+J, (4)
By setting £, = E. =0 and J =J =0, y- and z-directed
currents are avmded in the analys1s Thus the problem is
reduced to one of determining the propagation constant y
for the dominant TM_ mode as seen by invoking Faraday’s
law and employing the procedure below. (The situation of
nonzero J, and J; and its creation of higher order T™,
modes or hybrid modes are discussed in Appendix 1.)

Using Poisson’s equation (e is the dielectric constant)

(5)

two sets of zeroth-order (dc case) and first-order (ac case)
equations are obtained by placing (1) into (2), (3), and (5).
Restricting the solution to a small differential cell in the z
direction (y = 0), the dc case yields

q
V-E==(p-n+N,—N,)
€

dExO q
PN =;(Po“”0+Nd_Na) (6a)
n0x
dx :‘]Rdc(”Ovpo) (6b)
Ox
;x = —¢qRy.(ny, po) (6¢)
nOx qtu‘n( 0)” Ex0+ qD ( O)— (Gd)
Do
pOx qu’p( xO)pOExO - qu(ExO)T (66)
and the ac case yields
= = jogi +qR (7. p; ng. p,) (7a)
I =_ijﬁ_qRac(ﬁ”ﬁ;n0’p0) (7b)
dni 1 ngl ~
o [1 n M} 7.
dx gD, Jwe
lu’naxn() ~ ~ nu‘n ~
e (f-J,)- FnEXon (7¢)
ap 1 ax .
_z_—[1+ W paxPo I
dx gD, Jjwe
.Upaxpo I“Lp
J, - J +—=F 7d
]weD ( ) Dp (7)
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Here p,,. pux =V, ,x(Ex0)/dE,, where E is the total
electric field magnitude. J, is the total ac terminal current
density. Using the dc equations (6) subject to satisfactory
BC, ny(x), py(x), and E_y(x) are known in (7). Equations
(7) represent a simultaneous coupled system of four equa-
tions in four complex unknowns, or a coupled system of
eight equations in eight unknown real and imaginary vari-
ables. All the other ac variables of interest can be found
once the coupled (7) set is solved. The ac equations (7) are
solved for a chosen J, E, determined through

E =~ = ) (jwe)

and the propagation constant is determined as follows.

Differential cells which characterize transport in the x
direction can subsequently be stacked in the z direction to
obtain the propagation constant y. This procedure [12]
requires the calculation of an impedance based upon the
transport. The two-terminal complex impedance Z (2-m?,
in the x direction) per unit area is found from

(8)

z-= )

-k41l §<1

Z is a small-signal impedance and does not depend upon
J. V, is the applied or resultant voltage (from the conduc-
tor strip to the ground plane under the semiconductor),
given as

~ ! ~
7 = / E_ dx. (10)
A :
The propagation is directly given as

Joul
=/ ——. 11
Y Z (11)
The correct sign for vy is selected based upon the required
propagation direction.
The recombination rate R can be expressed as

pn—n?
= a0n.7) (12a)
where [10], [13], [14]
¢! (12b)
a(n,p)={m(p+p)+7(n+n) (120
(c,n +cpp)“1. (12d)

The denominator a(n, p) corresponds, respectively, to di-
rect, Shockley—Read—-Hall, or Auger recombination in (12);
Cp» €y, and c, are carrier capture rates for the direct and
Auger processes. For illustration, the Shockley—Read—-Hall
recombination rate is used to specify R. For a(n, p) in
(12¢), n,, 7,, 7,, n,, and p, are, respectively, defined as the
intrinsic density, the electron and hole lifetimes for single
level traps, and the electron and hole densities obtained by

replacing the quasi-Fermi energies by the trap energy E,
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(in the normal n and p Boltzmann expressions). Conse-
quently,

.2
Poltp — 1}

7.(po+ p)+ 7};("0"‘ ”t)

Rd‘ =

C

(13a)

nyp — pofi
Tn(Po +p)+ 7'p(”o + ”z)

ac

(pono—n?) (7,5 + 7,71)
[%. (ot p)+ 7, (ng+ )]

(13b)

Here midgap traps with E,= E, (intrinsic Fermi energy)
are used, and 7, and 7, variations with carrier densities are
neglected.

For the unipolar n-GaAs material case, R=0 and pu,
and D, are related through the Einstein relationship, D, =
k,Tu,/q. u, was taken to be [15], [16]

nu'n = [nun0+ VnsEj/E(?] [1+(E/EO)4] B

where u,,, v,, and E, are, respectively, the low field
mobility, the clectron saturation velocity, and a reference
electric field. u,, was calculated from (14) as

_dv, d

o= = ——— E
Au’na dE dE(lu‘n )

(14)

~ 4= /m 1+ (E/E)Y . (15)

GaAs parameters were set for a temperature of 300 K and
a doping concentration N,, =107 cm™? at p,,= 5500
cm?/V-s, v, =8.5%X10% cm/s, and E,=4.9 kV /cm [15],
[16]. Intrinsic density n, and relative permittivity ¢, were
set at 1.8x10% cm ™3 and 13.1 respectively [11].

In the bipolar silicon material case, R# 0, and p, , is
taken to be [14], [17] \

:U'n,p=n“‘(n,p)O[l+au‘(n.p)0E/U(n,p)s] ' (16)

with the Einstein relationship utilized. u,, ,), were derived
from (16) as

(17)

For a step junction in silicon, the parameters were set for
300 K temperature and doping concentrations N,; =N,
=10 cm ™3, creating the doping profile

N(x) =Ny (x) = N,(x)

— 2
I‘L(n,p)a - AU‘(n,p)/lu‘(n,p)O‘

=Nyu(x—1/2)— Nqu(—x+1/2) (18)

with 7,=2.6xX10"5 s, 7,=2.3X10"¢ 5, (=825 cm’/
Vs, p,o=340 cm?/V-s, 1,,=10X10" cm/s, and v, =
9.5%x10¢ cm/s [11], [14], [17]-[20]. In (18), [ is the semi-
conductor thickness and u(x) is the unit step function. 7,
and ¢, were set at 1.45X10'® cm™? and 11.7 respectively
[11].
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III. NUMERICAL APPROACH AND

BouNDARY CONDITIONS

The ac (or dc) transport equations (7) can be put into a
convenient form for numerical solution by defining the

normalizations [13], [21], [22]
_ L - L D n
E=T2p j=-—2 g ;=2 a=l
kT gn, Dy Ly n,
x L3 _ D k,T
)_C=——_— W="—w D=— lu‘naz—p‘na (19)
Ly D, D, gD,

where D, is a constant and
ek, T

L -
P q’n,

is an extrinsic Debye length based upon a chosen reference
density n, (k, is Boltzmann’s constant and 7T the tempera-
ture). For the n-GaAs material case D,=3.0 cm’/s and
n,=1.0x10'" cm 2 (dc), n, (ac), and J, was chosen to be
5.6x107* A/cm? (1 percent of the calculated metal—
semiconductor junction dc reverse saturation current). In
the Si material case, Dy=1.0 cm’/s and n,=n, (dc),
1.0x10% em ™3 (ac), and J, =1.5x10"1 A/cm ¢! percent
of the calculated bipolar junction dc reverse saturation
current).

Using the quasi-Fermi potential concept [10], [13], [23],
[24], the electron and hole densities can be eliminated in
the dc equations (6) with the substitutions

ny = nleLI(\l/—%)/ka

Po=n,el @/ kT (20)

Here ¢, and ¢, are, respectively, the hole and electron
quasi-Fermi potentials and ¥ is the electrostatic potential
defined by

dy
o E 21
dx x0 ( )
The potential normalization used is
y = 22
P= @)

Boundary conditions need to be chosen for both the ac
equations (7) and the dc equations (6) so that solutions can
be sought for y. Metal-semiconductor BC’s are required at
x =0 and x = . For the dc case, Dirichlet BC’s are speci-
fied for ¢ (= — E,/K,T) and ¢, and ¢ Thermal equ1hb-
rium [$, = ¢, in (20)] and charge neutrahty [dE ,/d% =
in (6a)] are assumed when a contact is ohmic. Under these
assumptions [10], {13]

7=V +In [{N+(JV2 +4ﬁ,2)1/2}/(2ﬁ,)]

b, =9,=V. (23)
for an ohmic contact. Here N(x) = Nd(x)— Na(x)._lz is
the applied terminal potential at the contact, and is ¥, or 0
at, respectively, x=0,]. When 7, < N, the logarlthmlc

term in (23) is nearly In(N/7,). For N <0 and 7, < |N},
the second term may be converted into a more convement
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form for numerical evaluation by multiplying the numera-
tor and the denominator of the argument by N minus the
square root term (taken always to be the positive branch).
When the contact forms a Schottky barrier,

b=V, —¢z+E, /2 (24)

and ¢, = $p =V, Equation (24) is based on an idealized
Schottky contact. The difference between the conduction
band edge and the intrinsic Fermi energy, E, — E,, is
equated to half of the bandgap energy E, (here normahzed
to k,T). ¢, is the normalized Schottky barrier voltage
height, given by the difference ¢,, — X, between the nor-
malized metal work function and the electron affinity of
the semiconductor [11]. Dirichlet BC’s for the ac case are
based on the assumed local equilibrium condition (fixed
change densities in time) of the carriers at the contacts.
Perturbed ac variables 7i and p are, at x =0,/,

(25)
Boundary conditions (25), invoking (7a) and (7b), are

equivalent to Neumann BC’s on the current densities at
x=0,1

i=p=0.

nx ox
= = 0. (26)

Systems of dc equations (6) and (21) and ac equations
(7), subject to the BC’s (23), (24), and (25), are solved on
the NRL Cray X-MP /24 computer using the Cray Fortran
programming language and an IMSL finite difference dif-
ferential equation library subroutine [25], [26]. Since the
IMSL subroutine necessitates the use of real variables, in
actuality ac equations (7) constitute a system twice as large
as listed. The finite difference approach utilizes trapezoidal
rule discretizations over an adaptive nonuniform mesh,
which provides for equidistribution of local truncation
error. It is a variable high-order method relying upon the
deferred correction technique. Enhanced convergence of
the solution for the nonlinear dc system of equations is
achieved through damped Newton iterations. The resulting
linear system of equations has block quasi-tridiagonal ma-
trices which are solved by LU decomposition with alternat-
ing partial pivoting. Computations proceed until the esti-
mated relative error of each variable across the entire mesh
in less than a specified relative error tolerance parameter 8.

The choice of independent variables 1, q),,, and ¢, was
made because they are all the same order of magnitude
and typically do not change more than one order of
magnitude across the whole structure. Therefore the accu-
racy of ¥, ¢,, and ¢> (and, accordingly, E.q, J., £ o
ny, and p,) across the mesh can be controlled prec1sely by
8. Exponential nonlinearities in the dc equations pose no
difficulties for the robust numerical method. For the lin-
earized system of ac differential equations, n, and D, can
be selected in conjunction with J and 8 to prov1de accu-
rate values of the ac variables over many orders of magni-
tude. Judicious choices for n,, Dy, J,, and & are necessary
to avoid & becoming an absolute error control parameter
in the convergence criteria for a variable when it is below
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unity, thereby possibly reducing accuracy. The IMSL sub-
routine recognizes linear differential equation systems and
implements a very efficient algorithm. Required dc quanti-
ties are obtained by linear interpolation of stored dc values
in common area arrays.

Good initial values (Appendix II) for the iterative
Newton approach to converge are needed for the set of dc
equations (6) and (21). First the equilibrium solution is
found by entering values obtained from approximate ana-
Iytical expressions (derived from the depletion approxima-
tion for junctions) over a selected nonuniform mesh.
Nonequilibrium solutions are next found by incrementing
the applied voltage (by AV,) and using the previous solu-
tion as input initial values. Following this procedure leads
to rapid convergence for a solution at an applied voltage
V,. For each successive bias voltage, the previous solution
must be modified slightly to satisfy new BC’s on v, ¢,
and ¢, (see Appendix II).

Initial values for the ac variables are taken to be zero
across the same final nonuniform mesh employed for the
dc solution. Even for large ac terminal currents J:, this
prescription works well. Jacobian matrices which charac-
terize the dc and ac differential equation systems are found
by taking the partial derivatives of (6) (and (21)) and (7).
These matrices are utilized by the IMSL, DVCPR finite
difference equation solving subroutine, and defined as
3(dv,/dx)/3V,, where the indices i, j=1,2,---, M and ¥,
is an unknown variable in the equation system. M is equal
to the number of equations (or independent variables) in
the system. For the dc system M =06 where all the dc
variables are real quantities. The ac system has complex
variables, and is numerically solved by breaking up each
variable into its real and imaginary components. This
decomposition creates an additional four ac equations so
that M = 8. Typically, a single dc bias point is calculated
in 1 to 8§ s, depending upon the final number of mesh
points. The maximum number of mesh points was set at
2000. A single ac frequency calculation usually took 1 to
4 s, again depending upon the final number of mesh
points.

The accuracy of propagation constants y determined
from this computer solution of the ac set of equations was
checked independently against those calculated from an
analytical moments-of-Boltzmann-equation analysis [12]
for a simple test case. In this test, spatially uniform dc
variables and single carrier transport at a 300 K lattice
temperature are assumed, and the d/d¢ and d(nv?)/dx
terms are dropped in the momentum balance equation
[12, eq. (2)]. For the ac BC’s (25) imposed on the perturbed
carrier density, y is given by (11), where

2.4

gl L, NG o
Z= s — jwel || v’ el I (27)

For a 3-um-long, 10! cm~3 doped n-GaAs sample with
g, = 8500 cm’*/V-s (1,=3.29x10""* s) and f=10 GHz,
(27) yields

Z=12.20299x107%— j1.15166 X107 ©-cm?
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while the numerical ac code yields
Z=2.20297Xx107°%— j1.15028 X107 Q-cm?.

From (11), it can be seen that both approaches give the
same propagation constant in this test case,

y=a+ jB=731+ j73.5cm™ L.

IV. NUMERICAL RESULTS AND EXPERIMENTAL DATA
A. Schottky Transmission Line on n-GaAs

The first structure examined is a voltage-variable phase
shifter employing a 1.5-pm-wide, 1600-pm-long Au/Pt/Ti
Schottky transmission line on an n-GaAs epitaxial layer
(N;o=10" ecm™3, /=2 pm thick) [1], [27]. Underneath
this layer is an n'-GaAs epitaxial layer which is electri-
cally accessed through large ohmic contact pads connected
to ground over their full 1600 pm length. This multilayered
mesa structure is supported by a thick semi-insulat-
ing GaAs substrate. For the numerical calculations, the
Schottky barrier height for Pt /Ti metallization on n-GaAs
was taken to be ¢, =0.81 V [28], and the n* layer was
treated as the virtual ground plane.

The dc simulations were carried .out over an applied

'voltage ¥, range of —3.5 V to +0.5 V. The calculated dc

electron particle currents were —5.6x107% A /cm? and
13.2 A/cm? for the —3.5 V and +0.5 V bias limits,
respectively. The dc spatial profiles were then utilized in
the ac simulations, which were run with impressed termi-
nal currents operating at frequencies f from 1 GHz to
20 GHz. Fig. 2(a)-(c) shows the magnitudes and phase
angles (with respect to the terminal current) for the ac
clectric field E_, the electron current density J, . and the
electron density # respectively for a dc bias ¥, of +0.5V
and a frequency of 1 GHz. Likewise, Fig. 3(a)—(c) shows
the same ac quantities, but for a dc bias ¥, of —3.5 V and
a frequency of 10 GHz.

From these figures, it is evident that the width of the
transition areas between space-charge depletion regions
and bulk regions can be a large percentage of the depletion
region width, and that these transition areas “penetrate”
well into what would typically be categorized as the bulk
region. In the V, = +0.5 V bias example, the transitional
zone width for the ac electric field, Fig. 2(a), is nearly
100 percent of the depletion region width, and starts at
approximately x = 0.06 pm, which is the edge of the deple-
tion region as calculated from the analytical expression

xd=@(¢z -V,)/(qN,)

where ¢, is the built-in potential. Similarly, the transitional
area begins at approximately x = 0.25 pm (edge of analyti-
cally computed depletion region) and extends about
0.1 pm further into the n layer for the V,= —3.5 V case
(Fig, 3(a)). Unlike field solutions which assume a “hard,”
distinct interface between the depletion region (o = 0) and
the bulk region (o = constant), these “soft” transitions are
more realistic and can be simulated only with a combined
transport-field approach which can adequately describe
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Fig. 2. GaAs Schottky line ac magnitude and phase spatial profiles of
(a) electric field E,, (b) electron current density J,, and (c) electron

nxs

DISTANCE {0 1um)
{c)

density 7 for ¥V, = +0.5 V and ac frequency f of 1 GHz. Parameters
are set at Ny =101 ecm™3, ¢, =081 V, /=2 pm, and T=300 K.
Abscissas show depth into GaAs from the distributed Schottky contact
at x=0.

Fig. 3. GaAs Schottky line ac magnitude and phase spatial profiles of
() electric field E,, (b) electron current density J, ., and (c) electron
density 7 for ¥, = —3.5 V and f =10 GHz. Parameters are the same as

in Fig. 2.
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Fig. 4. GaAs Schottky line normalized ‘phase constants /8, versus f
for ¥, = —3.5 Vand +0.5 V. Transport-field analysis (——); full-wave
field analysis (———~); experimental data (O).

the transverse current characteristics. Furthermore, by al-
lowing the electron mobility to vary with the electric field
as shown in (14) and (15), negative differential conduc-
tance (NDC) effects may be present in regions of the
structure where the electric field magnitude is on the order
of the threshold field (approximately 4 kV/cm in GaAs).
These field magnitudes occur in the transition areas. In
fact, the magnitude “dips” and phase angle changes in the
ac electron current density and electron density profiles
(Figs. 2(b) and (c) and 3(b) and (c)) are caused by the
GaAs mobility model which admits NDC. Monotonic
mobility versus field curves, such as in Si, do not generate
these NDC characteristics. If the NDC effect in these
localized regions is strong enough, it is possible that the
attenuation constant of the GaAs medium will be negative,
thereby signifying distributed gain for the structure (see
further discussion below). It is impossible to reproduce this
gain result using a field solver which employs a single,
positive-valued, constant conductivity for the transport
description. Also, the transitions in the electric field and
electron current density profiles (Figs. 2(a) and (b) and
3(a) and (b)) indicate the spatial transformation of a
displacement-dominated current to a particle (electron)
dominated current. For example, in the V,= —3.5 V bias
case (Fig. 3(a) and (b)) the displacement current, jwek, =
- weEx,imag =~ J, is dominant from x=0 to x = 0.25 pm
(area largely depleted of mobile carriers), whereas the
electron particle current, J:,x,rea] = gn oﬁnEx,reaJ ~J, (n,=
& ,.0), becomes dominant beyond the transitional zone edge,
x 2 0.35 pm (bulk region filled with carriers).

The wave propagation behavior may be obtained by
calculating the complex propagation constant (y = a, + jB)
for each ac frequency as in Section II. The results of these
calculations are given in Figs. 4 and 5 and Table I, and are
compared with a full-wave parallel-plate field-type solu-
tion method [6] (with /=2 pm, 0 =88.11 S/cm, N, =
107 cm ™3, ¢, =10.81 V) and with experimental data [1],
[27]. The depletion layer is represented by a perfect insula-
tor in the full-wave analysis, and its thickness is deter-
mined from dc analytical equations (provided in Appendix
II). Fig. 4 shows the normalized phase constants (or
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ATTENUATION CONSTANT (dB/cm)

0.0 5.0 10.0 15.0 20.0
FREQUENCY (GHz)

Fig. 5. GaAs Schottky line attenuation constants, a (dB/cm), for V, =
—3.5 V and +0.5 V. Semiconductor transport-field and microstrip
conductor analysis (——); experimental data (O).

TABLE 1
COMPARISON OF THEORETICAL TRANSPORT-FIELD VERSUS FULL-WAVE
SEMICONDUCTOR ATTENUATION CONSTANTS, &, (db/cm), IN THE
GAAS SCHOTTKY LINE EXAMPLE FOR TWO VALUES OF
APPLIED DC BI1AS VOLTAGE V,

F (GHz) Attenuation Constant (dB/ cm)
—-35V +05V
Transport Full-Wave Transport Full-Wave

1 0.005 0.006 -0.379 0.054

5 0.116 0.151 0.384 1.352
10 0.464 0.606 2.768 5.406
15 1.044 1.363 6.741 . 12.15
20 1.855 2.422 12.30 21.58

Parameters are set at Ny, =107 em™3, ¢, =081 V, /=2 am, and
T =300 K. )

“slow-wave” factors) B/B, = c/v,, where ¢ and v, are the

speed of light in vacuum and the wave phase velocity,

- respectively, as a function of frequency for the two V),

cases. The two types of numerical calculations display no
visible dispersive characteristics (less than 0.1 percent), but
the transport-field B/B, values are slightly smaller. This
difference is consistent with the fact that the transitional
areas predicted in the transport-field approach effectively
increase the nominal depletion depth, and the phase con-
stant is correspondingly smaller. On the other hand, the
experimental B8/, values show frequency dependence
caused by field penetration into the virtual n* epitaxial
ground plane and substrate. The extent of this penetration
is a function of the conductivity, the frequency, and the
structural dimensions of these layers. Since the effective
ground plane depth is greater than the n epitaxial layer
thickness (2 pm), the experimental 8/8, values are higher
than the ones numerically calculated. Agreement, neverthe-
less, becomes very good at higher frequencies, as the
effective ground plane depth decreases, and approaches
2 pm. .

The GaAs losses predicted from the numerically ob-
tained attenuation constants o, are shown in Table I for
the 1600-pm-long structure. For the V, = —3.5 V case, the
losses are small due to the mostly nonlossy “dielectric”
nature of the relatively wide depletion width. Material
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losses in the V,=+0.5 V case are larger for frequencies
greater than 5 GHz since the depletion width is extremely
narrow. For frequencies less than 5 GHz, however, NDC
characteristics of the Schottky microstrip structure with
applied bias of V,=+0.5 V are simulated by the trans-
port-field method, and a very small gain is predicted.
Actually, the total attenuation constant for the structure,
a=a,+a, is dominated by ohmic loss in the metallic
microstrip conductor («,), and this loss mechanism swamps
out any gain contribution from the GaAs semiconductor
material (negative o). In order to estimate this conductor
loss, a microstrip computer program was utilized with the
experimental 8/f, values providing the effective permit-
tivity values (e, ) and effective ground plane spacings
(b.g) as follows [1]:

€ett = (B/Bo)z (28a)

and

bege (cm) = (feff/f)\/zf(‘f), —V,)/(qNg) . (28b)

The thickness ¢ of the microstrip line is 0.63 pm.
The Au/Pt/Ti microstrip resistivity is taken as p,,=
2.44x107°% Q-cm. a, (dB/cm) is calculated by a standard
method [29]. The sum of the theoretically calculated semi-
conductor and metal contributions to the loss is plotted
against the actual experimental loss data in Fig. 5 for the
two V, cases. In these comparisons, the calculated loss
values are smaller than the experimental ones, since the
numerical simulation accounted for neither field penetra-
tion into the virtual n* epitaxial ground plane and sub-
strate nor other sources of experimental loss. The same
frequency behavior, however, is observed. At lower fre-
quencies, the approximate ‘/f behavior due to the metallic
conduction mechanism of the strip is evident, but the
semiconductor losses are seen to contribute as well at the
higher frequencies, where the loss increases with frequency
at a rate somewhat higher than \/7 .

B. Transmission Line over Si Bipolar Junction

The next structure examined is a transmission line inter-
connect over a Si bipolar step junction with a very small
transverse dimension (3 pm). Although interconnections
generally lie over passive semiconductor material, they
must also pass in the vicinity of, or sometimes over, active
devices which have micron and submicron feature sizes for
higher speed (GHz digital and logic pulse) and denser
circuits. The wave propagation behavior through these
active, inhomogenously doped semiconductor regions is
determined by considering the two-carrier (electron and
hole) transport interaction with the electromagnetic field.

The dc simulations were carried out over an applied
voltage V, range of —3.0 V to +0.3 V. (The metallurgical
Jjunction is located at x =0, and distances of 0.4 pm are
shown in the figures below on both sides of this junction.)
Minority carrier current densities J,,, and J,,, in, respec-
tively, the left- and right-hand sides of the semiconductor
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(a) electric field E, (b) electron J,, (——--) and hole J,, (— —")
current densities, and (c) electron i (—~--) and hole p (—---)
densities for V, = -3.0 V and f=10 GHz. Parameters are set at
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plane are located at x = —1.5 pm and x =1.5 pm, respectively.
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Fig. 8. .Calculated normalized phase constants, B/f;, and semiconduc-
tor attenuation comstants, &, (dB/cm), for the Si transmission line
containing an abrupt brpolar junction at two values of apphed dc bias
voltage V. Parameters are set at Nyg = N, =107 cm ™%, /=3 pm, and
T=300 K.

volume are unequal, J,,, =~ 2.4J, 0x- A smaller discrepancy
holds for the majority current dens1t1es, 0 = 1.02J,4,. In
contrast to the reverse-bias semiconductor volume srtua-
tion, the forward-biased V,= -+0.3 'V case shows that
carrier injection is so significant that in the p area Jnox
exceeds J,,, = 235/, and in the n area J,o, = 0.41 J,;,
The ac srmulatrons were run with impressed terminal cur-
rents operating at frequencies from 1 GHz to 20 GHz. Fig.
6(a)—(c) shows the magnitudes and phase angles (with
respect to the terminal current) for the ac electric field E

the electron J,. and hole J current densities, and the
electron 7 and hole P carrrer dens1t1es respectively, for a
dc bias of ¥, =—3.0 V and a frequency of 10 GHz. Fig.
6(a) and (b)_ demonstrates that the displacement current
—wekE ~ J, is predominant for

x,imag

-014<x<0. 14 pm, and that for |x| > 0.14 pm, the hole

Jpx reat = qunu‘pEx veal J (ALLp = nu‘pO) or the electron
Jnx,rea.l annu‘nEx real = J (lu'n -~ I'l‘nO) parucle current den'

sity predomrnates Frg 7 gives the results for a dc forward
bias of V,=+0.3 V and f =10 GHz.

The complex' propagation constants (y=a,+ jB) are
calculated for several ac frequéncies and shown in Fig. 8.
Slow wave factors, /8, are found to be similar to those
in the GaAs Schottky microstrip case for both forward -and
reverse applied bias and display a slight frequency disper-
sion. The Si semiconductor material loss, however, is seen
to be very large. These large attenuations may be at-
tributed to. the relatively small electron and hole mobilities
and to the presence of two “lossy” bulk regions which
constitute 90 percent of the structure’s length, even at
V,=—3.0 V reverse bias.

V. CONCLUSION

A transport-field formulation and solution ‘method to
find the small-signal propagation constant y has been
presented for transmission lines over an inhomogeneously
doped semiconductor substrate, under transverse dc bias.
Net doping concentration N(x) = N,(x)—~ N (x) allows
for an arbitrary distribution in the x direction. Internal
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junctions and severely graded areas within the semicon-
ductor volume may be treated besides more slowly varying
distributions. The transport model includes electrons and
holes, recombination—generation processes, dc and ac
field-dependent mobilities and diffusion constants, and
boundary condition contact effects. The dispersion of the
propagating wave due to doping inhomogeneity, substrate
loss, and other transport effects is accounted for by the
self-consistent approach used here. The dominant TM,
mode method should be applicable for strip widths w >/
= transverse semiconductor thickness, and millimeter-wave
frequencies based upon a maximum transport model fre-
quency limit inversely proportional to the energy relax-
ation time [30]. For GaAs, this limit is 50-100 GHz,
depending upon the maximum dc electric field.

Two layered structures of interest to monolithic mi-
crowave integrated circuits and high-speed digital inte-
grated circuits were studied. The first structure, a GaAs
voltage variable phase shifter, is representative of applica-
tions found in monolithic microwave integrated circuits.
The second structure, a transmission line over a Si bipolar
junction, is representative of applications found in high-
speed digital integrated circuits. Both structures addressed
the problem of present interest, ie., the modification of
propagation characteristics due to altered transport condi-
tions caused by the applied dc bias. This problem is of
special interest where interconnections pass into regions
near or over active devices.

The solution method calculated the dc carrier densities,
quasi-Fermi potentials, dc electric potential, and dc elec-
tric field in order to find the correct ac carrier densities,
electric field, and current densities. The propagation con-
stant vy was then determined from the ac information for
both structures. Detailed transport variable information,
as provided by the solution method, allows insight to be
gained about the location of ac and dc carriers, the relative
contributions of particle and displacement currents to the
total ac current, and other valuable facts. This transport
variable information provides insight into how the trans-
port affects the calculation of y. For example, the redistri-
bution of carriers in the vicinity of junctions such as the
Schottky barrier in the GaAs phase shifter structure is
shown to influence the propagation constant. Specifically,
the y result shows that a simplified full-wave field solver,
without the more detailed physical transport processes
provided in our model, overestimates the wave slowing.
Good agreement with experimental data is obtained for
that particular example when f>10 GHz and V,=0.5 V.

APPENDIX [

If z-component currents are retained (except J_,= 0),
then
d’E

X

dx?

. q d
+v% ———(p—7
VE————(F-7)

el (40 (AL
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d?E, Y q
+yEA+y=(p—7
G TV By (P-7)
= — ek, + jw,u(J:,: + J;_.) (A1b)
i, . L
o~ W= jedii+ qR (A, Fing, po) (Alc)
S ¥ = = jegh = R, (7. o, py)  (Ald)

J:zx = q[”nax(ExO)nOEt + p‘n(ExO)ExOﬁ]

~

di
+ an(EXO):Z;C— (Ale)

= q“naz(EXO)nOEz - an(Ex())yﬁ (Alf)

Tz
J;x =4 [“pax(EXO)pOEx + nu‘p(ExO)‘EXOﬁ]
dp
- qu(ExO) -;);

J;;: = qnupaz(EXO)pOI;fz + qu(ExO)‘Yﬁ (Alh)

Equations (6) must be solved first, subject to appropri-
ate BC’s, in order to provide the dc values required in (Al)
which vary spatially. By Faraday’s law,

(Alg)

.1
H=—
Jjou

JE, 9E,

————=1=0 A2
dy ax (42)

Therefore the propagating wave is a TM, mode. Thus

E ! o, 4. A3
x ,Y2+ k2 Jopd, —Yy dx ( a)
H ! E 4, A3b
=— +—.
y ]OJ‘lL Y x dx ( )

Here k? = w%p. Dropping (Ala) from (A1) and employing
(A3a) allows a coupled set of nonlinear, ordinary differen-
tial equations to be solved for five ac variables, from which
all of the other variables may be found:

af o
— = [ joqi(Bpeino+ B pepo) = v* — k2| E,
dx

. q\ q o
+7(ququ—;)p+v(:—1wqun)n (Ada)

dE,

T =£ (Adb)

A _ o\~ .

dx = qtu'naznOYEz + q(.]w - Dn.}'“)n + qRaC(n’ p; nOxDO)
(Adc)

al,,

—d.x— = qlu‘papoYEz_*_ q(Dpyz_ Jw)ﬁ— qRac(ﬁ’ﬁ; nO’ p())
(A4d)



KROWNE AND TAIT: PROPAGATION IN LAYERED BIASED SEMICONDUCTOR

ﬁ_ 1 _ij-UIHnaan 7 jwlu'lu‘naxno f
dx 4D, Y 4k ™ D (y*+k2)

lu‘naanY P & ~

207+ D e

jwnu‘lupaxp() &~

dﬁ _ 1 jwﬂQﬂpaxPO -1 J~ J
dx ¢D,| Y*+k* D, (v k)
f"’paxpOY d P«P .
— ¢+ —FE Adf
Dp(yz—i—kz)g D,, 0P ( )
dy
—=0.
™ (Adg)

In (A4) £ is a dummy variable eliminating the second-order
spatial derivative in (A1b), and the last equation allows y
to be self-consistently determined to satisfy the remaining
suite of equations [25]. If E, and v-E are sufficiently
small so that the first two field equations in (A4) can be
decoupled from the remaining five, and a small differential
cell examined so that y — 0, then (A4) reduce to the
fundamental TM, mode case in (7).

It is possible to include y-component ac perturbations
by retaining extra equations such as (Ala), (Ale), and
(Alg) containing E J .y and J ,y variables. Such an inclu-
sion creates a hybrld mode because E ad, By Y(E,,) and
IE ,/0x # 0 in (A2). In general, field- dependent mobilities
w111 not be spatially constant, as can be seen when examin-
ing the variation of p, across a pn junction area. Thus Ey
cannot be constant and TM modes are excluded.

ApPENDIX I1

In order to start the dc numerical calculations, initial
values for the spatially dependent variables throughout the
inhomogeneous semiconductor volume are chosen for the
equilibrium solution over a selected nonuniform mesh by
using the analytical expressions derived from the depletion
approximation for junctions. These equilibrium formulas
are provided below for the normalized variables. For the
unipolar n-GaAs Schottky line case, we use

¥(X) =

$(%,) = [Nd/ﬁt];

(_1)1 = J(En)_{—q—bB— Eg/z

Eo(X)=—d¥y(x)/dx;  ,(3)=0; T, (%)=0.

(AS)

Here, X, and ¢, are the normalized depletion region depth
and built-in potential.
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In the bipolar Si abrupt junction case, we use

Y(—X,), —125X< %,
i) = | PR NLEHE)/2 =7, 2550
¥(X,)-N,(¥-%,)°/2, 0<X<%,
¥(%,), X,<x<l/2
$(-%,)=-In(N,/n,);¥(x,) =In(N,/7,)
xp=\/2;i;z ’—d/[_a(_a-*_ _d)]
%,=\20,N,/[N,(N,+ N,)]

E(X) = —d¥(X)/dx
nOx(x) p()x(x) 0. (A6)
Here, X, and X, are the depletion region depths extending
into the n and p regions, respectively, with the metallurgi-

cal junction at X = 0. New trial values of the variables at
applied bias voltage increments AV, can be chosen:

N o 10]
‘P (X) —IP(X)"F J(O)—J(Z)
o —[1+—————M7“ ]E
xO(x)_ 1;(O)_l;(l) xO(x)

¢n(x) =7 (x) = b (x) + ¢,(x)
9y (x) = ¥7(x) = ¥ (x) + ¢, (x)
i (%) = T0(x) Tyox(x) = Jo.(x). (A7)

Notice that the second equation comes directly from the
first one of (A7) using (21).
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